
Hands-on Scientific Computing

Mar 03, 2023

Contents

1 Using the material 3

2 Study credits 5

3 Course video introduction 7

4 Outline 9
4.1 A: Basics . 10
4.2 B: Related science skills . 18
4.3 C: Linux and shell . 20
4.4 D: Clusters and High Performance Computing . 22
4.5 E: Scientific coding . 24
4.6 F: Advanced high performance computing . 26

i

ii

Hands-on Scientific Computing

The transition between courses and exercise and computational research can be difficult - there are so many important
things to know that aren’t academic, thus they aren’t taught in courses. This guide is your starting point - we guide you
through the practical tools and tricks that you would otherwise have to figure out on your own or learn from friends.

Hands-on SciComp is a “map” of diverse skills that you need for scientific computing, which are often not directly
taught in classes these days. It is the practice

Contents 1

Hands-on Scientific Computing

2 Contents

CHAPTER 1

Using the material

This is primarily a self-study course and reference material, which you can browse at your own pace as it becomes
relevant to you. A coordinated set of levels (~1 day) and modules (~ 1 hour) splits skills into levels depending on your
needs. A course instructor or research supervisor might point you at what is most important for your current work.
Then, focus on those levels at your own pace.

This course is coordinated by Aalto University Science-IT (See About for contact info)

3

https://scicomp.aalto.fi/about/

Hands-on Scientific Computing

4 Chapter 1. Using the material

CHAPTER 2

Study credits

If you are at Aalto University, you can get study credits. If you are in Finland but not Aalto, you can get credits via the
free FiTech program.

5

Hands-on Scientific Computing

6 Chapter 2. Study credits

CHAPTER 3

Course video introduction

See course video introduction series here

7

https://www.youtube.com/playlist?list=PLZLVmS9rf3nOkAFz63oKNSOKk7N47PoSJ

Hands-on Scientific Computing

8 Chapter 3. Course video introduction

CHAPTER 4

Outline

Level For who? Covers what?
A: Basics:
What
computing
and how?

Mini-level for everyone who’s
doing science with your com-
puter or may need to rely on
computing resources later.

What types of resources are available, when you’d use them, and
how to get help. How to set up your computer to do scientific work.
What comes next.

B: Related
science
skills

Everyone publishing in a
somewhat computational field.

Making figures, papers, posters, and so on they way it’s done in
computational fields.

C: Sci-
entific
computing
(Linux
and shell)

Everyone who’s doing more
than pointing and clicking sin-
gle applications on your own
computer or needs more com-
puting power.

In this level, you learn how to extend your power beyond your
own computer or existing applications. Includes data management,
scripting, Linux, and servers. Linux and the shell are a major point
here: this is the defacto (and only) good way to increase power.
Equal to the B level.

D: Clus-
ters
and high-
performance
computing

Those who need more power
than their own computer and
need to move to a cluster,
whether or not it’s highly par-
allelized.

Computing on clusters and remote servers, more advanced Linux,
more scripting, batch systems, HPC data management.

E: Sci-
entific
coding

When you start writing your
own software to do your re-
search.

Version control, how to manage code, software, and data even
more. We don’t cover programming itself, just the untaught parts
about how to use it as a researcher. Equal to the D level.

F: Ad-
vanced
high per-
formance
computing

Those who are programming
the most demanding parallel
scientific applications.

MPI (message passing interface, a parallel programming frame-
work), OpenMP (another one), GPU programming, etc. And any-
thing more advanced.

We have material for different learning styles: you might prefer to watch a video to see quick live examples, or read
something for more detail. All of these aspects compliment each other, and you can do what suits you the best.

9

Hands-on Scientific Computing

4.1 A: Basics

What’s available? How can it be found? What basic things do you need to install?

4.1.1 A: Basics

A01 Introduction to scientific computing

Description Get started with common scientific computing guidelines.
Video intro
Reading >Good computing practices for everyone regardless of skills
Questions >What kind of a workflow to follow? >Where to get help?
Aalto > Welcome, Researchers > Getting help

A10 Configuring Linux for scientific work

Description Linux is great for scientific work. This goes over some key things to install to get going.
Video intro
Reading >Software Carpentry set up material
Questions >What kind of tools do I need?
Aalto

About Linux

Linux is an operating system known for its flexibility and power. It doesn’t hide things from the user, which makes
it especially suitable for scientific computing, where you need to assemble your own pieces together and have full
control. Because of it’s open-source spirit, many other open-source tools are developed for it

Linux is not just one thing: there are many distributions which combine software. Which one to choose is basically
user preference (ask your friends what they use), but there are two major types: Debian-based (uses apt to install
programs) and Red-hat based (uses yum to install programs). In practice, Ubuntu is a good default these days. These
instructions (so far) are for Debian-based distributions like Ubuntu.

On Ubuntu, the standard way to install things is sudo apt-get install $package_names ...

Shell tools

The shell provides an interface to efficiently access the true power of a computer. Now we use it to install tools but it
can be used for many other tasks too.

Every Linux distribution comes with a shell already installed. Start the “Terminal” or “Shell” to see it. To verify, try
running this:

$ echo $SHELL
/bin/bash

The convention is the $ represents lines you type (without the $ - notice most shell prompts have it there already), the
other lines are what comes out. # represents comments.

If you want a crash course on using the shell, see the Aalto shell crash course. You don’t need this right now.

10 Chapter 4. Outline

https://doi.org/10.1371/journal.pcbi.1005510
https://scicomp.aalto.fi/aalto/welcomeresearchers.html
https://scicomp.aalto.fi/help/
https://carpentries.github.io/workshop-template/#git
https://scicomp.aalto.fi/scicomp/shell/

Hands-on Scientific Computing

Version control (git)

Using version control is like an insurance for your projects. It is not only about tracking changes but also to improve
your project visibility and make it easier to collaborate.

Git is the most popular system for version control and GitHub is one of the services that provide online storing for
projects.

This comes included in all operating systems, but needs to be installed. Here, we install git and some other useful
frontends for it:

$ sudo apt install git gitk gitg

Verify from the shell (see above to start the shell):

$ git --version
git version 2.20.1

Your organization might provide you access to some other repository manager than GitHub but since GitHub is a
higher availablity solution, it does not hurt to create an account there. You can sign up for Github here

Anaconda (Python)

In software development there are some standard packages that are useful to have without the trouble of installing
them separately with their dependencies.

There are very many programming languages, and you probably won’t only use Python. But, it is quite common so
we mention it here. We install the Anaconda distribution of Python: it gets you all the basic things you need, and can
also install R and other programming languages, too. Anaconda is large and has all the most common tools people
need - if you want to save space, install Miniconda instead (then you have to decide what extra packages you want).

• Anaconda

• Miniconda

This will get you Jupyter and many other Python things, too.

Anaconda allows you to manage your development environment which is good since you can have different environ-
ments dedicated to their designated purposes.

Todo: How to install it in the shell. How to start/use it. Easier install instructions. Link the SWC video.

To verify from the shell (see above to start the shell):

$ python3 -V
Python 3.6.8 :: Anaconda custom (64-bit)

$ conda info
active environment : None

...
base environment : /home/rkdarst/anaconda3 (writable)

Editor

It’s good to have one command-line editor and one graphical Integrated Development Environment.

4.1. A: Basics 11

https://github.com
https://docs.continuum.io/anaconda/install
https://docs.conda.io/en/latest/miniconda.html

Hands-on Scientific Computing

Command line editor

For fast things, you want to be able to edit files quickly from a the command line. Nano is the simplest to use. If you
want, you can check out vim or emacs, but they certainly harder to use so we don’t recommend them to start off.

To install nano:

$ sudo apt-get install nano

Todo: Is this the most useful verification?

See this nano tutorial to learn more. To verify nano from the shell (see above to start the shell):

$ nano my_file.txt

Integrated Development Environment

** You should install one good Integrated Development Environment (IDE). This has coding, version control, and
many more things build in to one interface. These days, VSCode is the most popular. Install from the vscode website.
Out of principle, we recommend you disable data collection.

Emacs can also serve as an IDE once you learn enough about it.

Jupyter

Jupyter is an interactive way to explore data and do programming. It can be used to add code, output, titles, text and
visualisations into one document. It’s already installed along with Anaconda. To start it in a certain directory, go to
that directory in the shell and run:

$ jupyter notebook # older notebook interface
$ jupyter lab # newer JupyterLab interface

Follow this to install useful extensions to your environment. Especially ipywidgets are needed if you continue to do
exercises.

Other programming tools

Install:

$ sudo apt install build-essential meld

• build-essential installs some basic compilers and so on.

• meld: A graphical diff program

If you wish to obtain credits from the course, you might need

• NumPy

• Matplotlib

to complete exercises. These libraries are pre-installed with Anaconda installation. Further information about instal-
lations can be found here: NumPy and Matplotlib

12 Chapter 4. Outline

https://en.wikipedia.org/wiki/Vim_(text_editor)
https://www.gnu.org/software/emacs/
https://www.tutorialspoint.com/how-to-use-nano-text-editor
https://code.visualstudio.com/
https://code.visualstudio.com/docs/supporting/faq#_how-to-disable-telemetry-reporting
https://jupyter.org
https://coderefinery.github.io/installation/jupyter/
https://numpy.org/install/
https://matplotlib.org/3.3.2/users/installing.html

Hands-on Scientific Computing

A11 Configuring Mac for scientific work

Description Get your Mac computer set up for scientific computing tasks.
Video intro >Software Carpentry tutorial for Shell, Git and Nano installations on a Mac.
Reading >Software Carpentry set up material
Questions
Aalto

MacOS became popular for scientific work when it became based on Unix: it provided an easy interface and the shell,
which is a great combination.

This page gets you set up for basic scientific work using Python.

Shell tools

The shell provides an interface to efficiently access the true power of a computer. Now we use it to install tools but it
can be used for many other tasks too.

Mac comes with the bash (or zsh for 10.15 and later), so you don’t need to do anything. Just start it by TODO. To
verify, try running this:

echo $SHELL

Version control (git)

Using version control is like an insurance for your projects. It is not only about tracking changes but also to improve
your project visibility and make it easier to collaborate.

Git is the most popular system for version control and GitHub is one of the services that provide online storing for
projects.

You install Git for MacOS by downloading the most recent “mavricks” installer from http://sourceforge.net/projects/
git-osx-installer/files/

If you have Homebrew (a package manager) you can do:

brew install git

Nothing appears in Applications, since it’s a command line program. From

Verify it from the shell terminal:

git --version

Your organization might provide you access to some other repository manager than GitHub but since GitHub is a
higher availablity solution, it does not hurt to create an account there. You can sign up for Github here

Anaconda (Python)

In software development there are some standard packages that are useful to have without the trouble of installing
them separately with their dependencies.

There are very many programming languages, and you probably won’t only use Python. But, it is quite common so
we mention it here. We install the Anaconda distribution of Python: it gets you all the basic things you need, and can

4.1. A: Basics 13

https://www.youtube.com/watch?v=9LQhwETCdwY
https://carpentries.github.io/workshop-template/#git
http://sourceforge.net/projects/git-osx-installer/files/
http://sourceforge.net/projects/git-osx-installer/files/
https://github.com

Hands-on Scientific Computing

also install R and other programming languages, too. Anaconda is large and has all the most common things people
need - if you want to save space, install Miniconda instead (then you have to decide what extra packages you want).

• Anaconda

• Miniconda

This will get you Jupyter and many other Python things, too.

Anaconda allows you to manage your development environment which is good since you can have different environ-
ments dedicated to their designated purposes.

Todo: Same stuff from Linux page. How to use it.

To verify from the shell (see above to start the shell):

$ python3 -V
Python 3.6.8 :: Anaconda custom (64-bit)

$ conda info
active environment : None

...
base environment : /home/rkdarst/anaconda3 (writable)

Homebrew

Homebrew is a package manager for MacOS, which lets you install lots of packages easily. Many of these are essential
to having a good environment for programming, and taking full advantage of MacOS.

To install, go to brew.sh and follow instructions. You can then, for example, use brew install to install many
things you may need.

After installing, you can run brew doctor to ensure everything was installed correctly.

Editor

FOR IDE (Integrated development environment): Visual Studio Code is a free editor available for Windows, macOS
and Linux. It is a good alternative for both a beginner and a more advanced user as it is simple to use but highly
customizable. Install and learn more here. Out of principle, we recommend you disable data collection.

For command line: You should make sure nano is installed by typing in the shell for instance, nano my_file.
txt. You can also use vi/vim or emacs but as those are harder to use, we do not recommend them for your first
command line editor. Nano is used through keyboard shortcuts and some of them are shown in the editor. See this
tutorial to start editing with nano.

Jupyter

Jupyter is an interactive way to explore data. It can be used to add code, output, titles, text and visualisations into one
document. It’s already installed along with Anaconda.

Follow this to install useful extensions to your environment. Especially ipywidgets are needed if you continue to do
exercises.

14 Chapter 4. Outline

https://docs.continuum.io/anaconda/install
https://docs.conda.io/en/latest/miniconda.html
https://brew.sh/
https://code.visualstudio.com/Download
https://code.visualstudio.com/docs/supporting/faq#_how-to-disable-telemetry-reporting
https://www.tutorialspoint.com/how-to-use-nano-text-editor
https://jupyter.org
https://coderefinery.github.io/installation/jupyter/

Hands-on Scientific Computing

Other programming tools

If you wish to obtain credits from the course, you might need

• NumPy

• Matplotlib

to complete exercises. These libraries are pre-installed with Anaconda installation. Further information about instal-
lations can be found here: NumPy and Matplotlib

A12 Configuring Windows for scientific work

Description Get your Windows computer set up for scientific computing tasks.
Video intro >Software Carpentry Git Bash tutorial for Windows.
Reading >Software Carpentry set up material
Questions
Aalto

About Windows

Windows is perhaps the most common operating system for desktop computers, but historically hasn’t been that
common or good for scientific work. However, this is changing and these days you can do a lot of good stuff with
Windows if you set it up right. We’ll walk through it here.

Shell tools

The shell provides an interface to efficiently access the true power of a computer. Now we use it to install tools but it
can be used for many other tasks too.

Windows comes with CMD (cmd.exe) known as command prompt. You can find CMD by typing cmd in your start
menu search bar. A slightly better alternative would be a Git bash command line because Windows command prompt
does not support many UNIX commands. Git Bash emulates a bash environment and lets you use all git features plus
most of standard unix commands - so you are immediately compatible with Mac and Linux.

See the next section for installation instructions.

Version control (git)

Using version control is like an insurance for your projects. It is not only about tracking changes but also to improve
your project visibility and make it easier to collaborate.

To install Git Bash, follow this tutorial made by Software Carpentry. You only need to follow the video instructions
for Git Bash (until 2:50) because the newest versions of Git Bash should install the needed *nix environment tools
automatically.

Please note that the Git setup window will ask you to choose your default text editor and it will first suggest vi/vim.
However, we do not recommend vi/vim for your first command line editor but rather to change it to nano text editor,
which is more easier for a beginner to use.

After you are all set up, open your Git Bash and try it out by typing for example: nano and git --version

Links:

4.1. A: Basics 15

https://numpy.org/install/
https://matplotlib.org/3.3.2/users/installing.html
https://www.youtube.com/watch?v=339AEqk9c-8
https://carpentries.github.io/workshop-template/#git
https://www.youtube.com/watch?v=339AEqk9c-8

Hands-on Scientific Computing

• Git Bash

• Nano text editor tutorial

• Git can also be installed through Anaconda

Your organization might provide you access to some other repository manager than GitHub but since GitHub is a
higher availablity solution, it does not hurt to create an account there. You can sign up for Github here

Anaconda (Python)

In software development there are some standard packages that are useful to have without the trouble of installing
them separately with their dependencies.

There are very many programming languages, and you probably won’t only use Python. But, it is quite common so
we mention it here. We install the Anaconda distribution of Python: it gets you all the basic things you need, and can
also install R and other programming languages, too. Anaconda is large and has all the most common tools people
need - if you want to save space, install Miniconda instead (then you have to decide what extra packages you want).

• Anaconda

• Miniconda

Copy other information from https://coderefinery.github.io/installation/python/

Anaconda allows you to manage your development environment which is good since you can have different environ-
ments dedicated to their designated purposes.

Todo: We need to give details about how to use it.

Editor

For IDE (Integrated development environment): Visual Studio Code by Microsoft is a free source code editor. It offers
customizable functionalities for a more advanced user but is simple enough for a beginner to start with. Install and
learn more here.

Other good alternative for Windows is Notepad++ source code and text editor. Notepad++ is not exactly an IDE as it
lacks features that IDEs have but plugins are available to add functionalities. Download and read more here.

Jupyter

Jupyter is an interactive way to explore data. It can be used to add code, output, titles, text and visualisations into one
document. It’s already installed along with Anaconda. To start it in a certain directory, go to that directory in the shell
and run:

$ jupyter notebook # older notebook interface
$ jupyter lab # newer JupyterLab interface

Follow this to install useful extensions to your environment. Especially ipywidgets are needed if you continue to do
exercises.

16 Chapter 4. Outline

https://git-scm.com/download/win
https://www.tutorialspoint.com/how-to-use-nano-text-editor
https://github.com
https://docs.continuum.io/anaconda/install
https://docs.conda.io/en/latest/miniconda.html
https://coderefinery.github.io/installation/python/
https://code.visualstudio.com/docs/setup/windows
https://notepad-plus-plus.org
https://jupyter.org
https://coderefinery.github.io/installation/jupyter/

Hands-on Scientific Computing

Other programming tools

For remote network tools: MobaXterm

If you wish to obtain credits from the course, you might need

• NumPy

• Matplotlib

to complete exercises. These libraries are pre-installed with Anaconda installation. Further information about instal-
lations can be found here: NumPy and Matplotlib

About Questions Video Intro Reading Aalto
A01 Intro-
duction to
scientific
computing

Get started with com-
mon scientific comput-
ing guidelines.

>What kind
of a workflow
to follow?
>Where to get
help?

>Good com-
puting practices
for everyone
regardless of
skills

> Wel-
come,
Re-
searchers
> Getting
help

A10 Con-
figuring
Linux for
scientific
work

Linux is great for sci-
entific work. This goes
over some key things to
install to get going.

>What kind of
tools do I need?

>Software Car-
pentry set up
material

A11 Con-
figuring
Mac for
scientific
work

Get your Mac com-
puter set up for scien-
tific computing tasks.

>Software Carpen-
try tutorial for Shell,
Git and Nano instal-
lations on a Mac.

>Software Car-
pentry set up
material

A12 Con-
figuring
Windows
for sci-
entific
work

Get your Windows
computer set up for
scientific computing
tasks.

>Software Carpen-
try Git Bash tutorial
for Windows.

>Software Car-
pentry set up
material

4.1. A: Basics 17

https://mobaxterm.mobatek.net
https://numpy.org/install/
https://matplotlib.org/3.3.2/users/installing.html
https://doi.org/10.1371/journal.pcbi.1005510
https://doi.org/10.1371/journal.pcbi.1005510
https://scicomp.aalto.fi/aalto/welcomeresearchers.html
https://scicomp.aalto.fi/aalto/welcomeresearchers.html
https://scicomp.aalto.fi/aalto/welcomeresearchers.html
https://scicomp.aalto.fi/aalto/welcomeresearchers.html
https://scicomp.aalto.fi/help/
https://scicomp.aalto.fi/help/
https://carpentries.github.io/workshop-template/#git
https://www.youtube.com/watch?v=9LQhwETCdwY
https://carpentries.github.io/workshop-template/#git
https://www.youtube.com/watch?v=339AEqk9c-8
https://carpentries.github.io/workshop-template/#git

Hands-on Scientific Computing

About Questions Video Intro Reading Aalto
A01 Intro-
duction to
scientific
computing

Get started with com-
mon scientific comput-
ing guidelines.

>What kind
of a workflow
to follow?
>Where to get
help?

>Good com-
puting practices
for everyone
regardless of
skills

> Wel-
come,
Re-
searchers
> Getting
help

A10 Con-
figuring
Linux for
scientific
work

Linux is great for sci-
entific work. This goes
over some key things to
install to get going.

>What kind of
tools do I need?

>Software Car-
pentry set up
material

A11 Con-
figuring
Mac for
scientific
work

Get your Mac com-
puter set up for scien-
tific computing tasks.

>Software Carpen-
try tutorial for Shell,
Git and Nano instal-
lations on a Mac.

>Software Car-
pentry set up
material

A12 Con-
figuring
Windows
for sci-
entific
work

Get your Windows
computer set up for
scientific computing
tasks.

>Software Carpen-
try Git Bash tutorial
for Windows.

>Software Car-
pentry set up
material

4.2 B: Related science skills

Assorted things that help you with your work, but not directly related to doing computations.

4.2.1 B: Related science skills

B21 Jupyter Notebooks

Descrip-
tion

Notebooks are an efficient way to make self-documenting code and scripts and make data science a
bit easier.

Video in-
tro

>Data analysis with Jupyter video series.

Reading >CodeRefinery Jupyter course
Questions >For what kind of work Jupyter suits the best? >How is a Jupyter kernel launched?
Aalto JupyterHub for students/misc work, JupyterHub for HPC

Jupyter Notebook is part of the Project Jupyter together with JupyterHub and JupyterLab. It provides an online
environment for creating documents which can contain executable code, explanatory text and other resources (e.g.
graphs).

Jupyter Notebook is good for teaching, demonstrating and sharing ideas and testing out examples in browser. With
a large codebase and more advanced projects it is better to seek out other options as version control and automated
testing become harder.

18 Chapter 4. Outline

https://doi.org/10.1371/journal.pcbi.1005510
https://doi.org/10.1371/journal.pcbi.1005510
https://scicomp.aalto.fi/aalto/welcomeresearchers.html
https://scicomp.aalto.fi/aalto/welcomeresearchers.html
https://scicomp.aalto.fi/aalto/welcomeresearchers.html
https://scicomp.aalto.fi/aalto/welcomeresearchers.html
https://scicomp.aalto.fi/help/
https://scicomp.aalto.fi/help/
https://carpentries.github.io/workshop-template/#git
https://www.youtube.com/watch?v=9LQhwETCdwY
https://carpentries.github.io/workshop-template/#git
https://www.youtube.com/watch?v=339AEqk9c-8
https://carpentries.github.io/workshop-template/#git
https://www.youtube.com/playlist?list=PLYCpMb24GpOC704uO9svUrihl-HY1tTJJ
https://coderefinery.github.io/jupyter/
https://scicomp.aalto.fi/aalto/jupyterhub/
https://scicomp.aalto.fi/triton/apps/jupyter/

Hands-on Scientific Computing

Installation

If you have installed Anaconda, Jupyter should already be installed on your machine. See that your Jupyter installation
is working by typing jupyter-notebook in the shell. JupyterLab can be launched by typing jupyter-lab.

See here for optional extensions you can install in the notebooks.

About Questions Video Intro Reading Aalto
B20
Data
Man-
age-
ment

Data needs to be
organized and han-
dled well, or else it
quickly becomes un-
usable. There are
good and bad ways to
do this.

>How to use ver-
sion control in
data management?
>What kind of
ordering makes the
best structure?

>What is not data man-
agement, in 5 minutes and
>Data structuring

>The Turing
Way data
management
chapter >In-
formation for
research at
FSD

Research
data man-
agement
at Aalto,
at sci-
comp.aalto.fi

B21
Jupyter
Note-
books

Notebooks are an
efficient way to make
self-documenting
code and scripts and
make data science a
bit easier.

>For what kind of
work Jupyter suits
the best? >How
is a Jupyter kernel
launched?

>Data analysis with Jupyter
video series.

>CodeRefin-
ery Jupyter
course

Jupyter-
Hub
for stu-
dents/misc
work,
Jupyter-
Hub for
HPC

B30
Mak-
ing
fig-
ures

How to make
publication-quality
figures for your
work.

>What kinds of
tools exist for
making figures
and plots? >What
are some dos and
don’ts for plots and
figures?

>Inkscape tutorials cov-
ering Inkscape basics for
making figures, flowcharts,
etc. >A series of Matplotlib
tutorials for plotting in
Python. >ggplot2 tutorials
in R.

>PLOS
guidelines
for better
figures

B31
La-
TeX
for
scien-
tific
pub-
lica-
tions

LaTeX is the stan-
dard method for
making publications
in the computa-
tional and physical
sciences.

>How to build a
LaTeX document?

>LaTeX tutorial series cov-
ering LaTeX formatting and
constructing a report

>Introduc-
tion to La-
TeX (online
book) >Short
summary
of LaTex
features

> Guide
to LaTeX
(FI)

B32
Sci-
entific
posters

Making a scientific
poster is a common
task, but not often
taught. There are bet-
ter tools than Power-
Point.

>What makes a
clear and concise
poster?

>The dos and don’ts of
making a scientific poster

>Basics of
creating a
Research
Poster

4.2. B: Related science skills 19

https://coderefinery.github.io/installation/jupyter/#how-to-verify-the-installation
https://www.youtube.com/watch?v=N2zK3sAtr-4
https://www.youtube.com/watch?v=N2zK3sAtr-4
https://www.youtube.com/watch?v=3MEJ38BO6Mo&t=
https://the-turing-way.netlify.app/reproducible-research/rdm.html
https://the-turing-way.netlify.app/reproducible-research/rdm.html
https://the-turing-way.netlify.app/reproducible-research/rdm.html
https://www.fsd.tuni.fi/aineistonhallinta/en/
https://www.aalto.fi/en/services/research-data-management-rdm-and-open-science
https://scicomp.aalto.fi/data/
https://scicomp.aalto.fi/data/
https://www.youtube.com/playlist?list=PLYCpMb24GpOC704uO9svUrihl-HY1tTJJ
https://coderefinery.github.io/jupyter/
https://coderefinery.github.io/jupyter/
https://scicomp.aalto.fi/aalto/jupyterhub/
https://scicomp.aalto.fi/aalto/jupyterhub/
https://scicomp.aalto.fi/aalto/jupyterhub/
https://scicomp.aalto.fi/aalto/jupyterhub/
https://scicomp.aalto.fi/aalto/jupyterhub/
https://scicomp.aalto.fi/triton/apps/jupyter/
https://scicomp.aalto.fi/triton/apps/jupyter/
https://scicomp.aalto.fi/triton/apps/jupyter/
https://inkscape.org/learn/tutorials/
https://www.youtube.com/playlist?list=PL-osiE80TeTvipOqomVEeZ1HRrcEvtZB_
https://www.youtube.com/playlist?list=PL-osiE80TeTvipOqomVEeZ1HRrcEvtZB_
https://www.youtube.com/playlist?list=PLjgj6kdf_snaBCTJEi53DvRVgOuVbzyku
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003833
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003833
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003833
https://www.youtube.com/playlist?list=PLNnwglGGYoTtW7o4PHFOSWGevcdFa3v3D
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://www.latex-tutorial.com/quick-start/
https://www.latex-tutorial.com/quick-start/
https://www.cs.helsinki.fi/u/jhasa/latexkurssi/
https://www.cs.helsinki.fi/u/jhasa/latexkurssi/
https://www.youtube.com/watch?v=agtgnJP3KoQ
https://www.youtube.com/watch?v=agtgnJP3KoQ
https://guides.nyu.edu/posters
https://guides.nyu.edu/posters
https://guides.nyu.edu/posters
https://guides.nyu.edu/posters

Hands-on Scientific Computing

About Questions Video Intro Reading Aalto
B20
Data
Man-
age-
ment

Data needs to be
organized and han-
dled well, or else it
quickly becomes un-
usable. There are
good and bad ways to
do this.

>How to use ver-
sion control in
data management?
>What kind of
ordering makes the
best structure?

>What is not data man-
agement, in 5 minutes and
>Data structuring

>The Turing
Way data
management
chapter >In-
formation for
research at
FSD

Research
data man-
agement
at Aalto,
at sci-
comp.aalto.fi

B21
Jupyter
Note-
books

Notebooks are an
efficient way to make
self-documenting
code and scripts and
make data science a
bit easier.

>For what kind of
work Jupyter suits
the best? >How
is a Jupyter kernel
launched?

>Data analysis with Jupyter
video series.

>CodeRefin-
ery Jupyter
course

Jupyter-
Hub
for stu-
dents/misc
work,
Jupyter-
Hub for
HPC

B30
Mak-
ing
fig-
ures

How to make
publication-quality
figures for your
work.

>What kinds of
tools exist for
making figures
and plots? >What
are some dos and
don’ts for plots and
figures?

>Inkscape tutorials cov-
ering Inkscape basics for
making figures, flowcharts,
etc. >A series of Matplotlib
tutorials for plotting in
Python. >ggplot2 tutorials
in R.

>PLOS
guidelines
for better
figures

B31
La-
TeX
for
scien-
tific
pub-
lica-
tions

LaTeX is the stan-
dard method for
making publications
in the computa-
tional and physical
sciences.

>How to build a
LaTeX document?

>LaTeX tutorial series cov-
ering LaTeX formatting and
constructing a report

>Introduc-
tion to La-
TeX (online
book) >Short
summary
of LaTex
features

> Guide
to LaTeX
(FI)

B32
Sci-
entific
posters

Making a scientific
poster is a common
task, but not often
taught. There are bet-
ter tools than Power-
Point.

>What makes a
clear and concise
poster?

>The dos and don’ts of
making a scientific poster

>Basics of
creating a
Research
Poster

4.3 C: Linux and shell

The basics which everything else is built on.

20 Chapter 4. Outline

https://www.youtube.com/watch?v=N2zK3sAtr-4
https://www.youtube.com/watch?v=N2zK3sAtr-4
https://www.youtube.com/watch?v=3MEJ38BO6Mo&t=
https://the-turing-way.netlify.app/reproducible-research/rdm.html
https://the-turing-way.netlify.app/reproducible-research/rdm.html
https://the-turing-way.netlify.app/reproducible-research/rdm.html
https://www.fsd.tuni.fi/aineistonhallinta/en/
https://www.aalto.fi/en/services/research-data-management-rdm-and-open-science
https://scicomp.aalto.fi/data/
https://scicomp.aalto.fi/data/
https://www.youtube.com/playlist?list=PLYCpMb24GpOC704uO9svUrihl-HY1tTJJ
https://coderefinery.github.io/jupyter/
https://coderefinery.github.io/jupyter/
https://scicomp.aalto.fi/aalto/jupyterhub/
https://scicomp.aalto.fi/aalto/jupyterhub/
https://scicomp.aalto.fi/aalto/jupyterhub/
https://scicomp.aalto.fi/aalto/jupyterhub/
https://scicomp.aalto.fi/aalto/jupyterhub/
https://scicomp.aalto.fi/triton/apps/jupyter/
https://scicomp.aalto.fi/triton/apps/jupyter/
https://scicomp.aalto.fi/triton/apps/jupyter/
https://inkscape.org/learn/tutorials/
https://www.youtube.com/playlist?list=PL-osiE80TeTvipOqomVEeZ1HRrcEvtZB_
https://www.youtube.com/playlist?list=PL-osiE80TeTvipOqomVEeZ1HRrcEvtZB_
https://www.youtube.com/playlist?list=PLjgj6kdf_snaBCTJEi53DvRVgOuVbzyku
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003833
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003833
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003833
https://www.youtube.com/playlist?list=PLNnwglGGYoTtW7o4PHFOSWGevcdFa3v3D
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://www.latex-tutorial.com/quick-start/
https://www.latex-tutorial.com/quick-start/
https://www.cs.helsinki.fi/u/jhasa/latexkurssi/
https://www.cs.helsinki.fi/u/jhasa/latexkurssi/
https://www.youtube.com/watch?v=agtgnJP3KoQ
https://www.youtube.com/watch?v=agtgnJP3KoQ
https://guides.nyu.edu/posters
https://guides.nyu.edu/posters
https://guides.nyu.edu/posters
https://guides.nyu.edu/posters

Hands-on Scientific Computing

4.3.1 C: Linux and shell

About Questions Video In-
tro

Reading Aalto

C10
Basic
shell

Let’s face it: the command
line is the basis of most data
science and programming.

>How does the
shell work?
>When to use
a CLI instead
of a GUI?

>Shell
crash
course

>Shell crash course
>Software carpentry
Shell-novice >The first
part of our shell course is
good too.

C23
Text
edi-
tors
and
IDEs

Your best friend is a good text
editor - sometimes you just
need to edit things quickly on
some remote system.

>Which tools
to use for code
development
and editing?

>Get to
know
VS Code
tutorial
series

>Software Carpentry
shell-novice, “Create a
text file” part of section
3 >Tutorial on IDEs by
CodeRefinery.

C20
Shell
script-
ing

If you can do it on the Linux
shell, you can automate it.

>How to
make use of
shell script-
ing tools in
repetitive task
automation?

>Shell
scripting
tutorials.

>Continue with the
Science-IT Linux shell
tutorial part 2.

C21
Ver-
sion
con-
trol
for
you

Version control lets you track
changes, go back in time, and
collaborate on code and pa-
pers: an absolute requirement
for scientific computing.

>What is Git?
>How to ini-
tialize a Git
repository?

>Why use
version
control
>Git for
beginners

>Introduction to version
control by CodeRefinery

C22
SSH
and
re-
mote
ac-
cess

A short but important course:
how to do work remotely. Dif-
ferent expert tips for making
ssh better, too.

>What does
SSH mean and
when to use it?

>Intro-
duction
to secure
shell by
Software
Carpentry

>SSH for working on a re-
mote machine.

How to
make
ssh work
better
by Aalto
Scicomp

C23
Make

Automate the repetitive stuff
with Make.

>How can a
Makefile be
useful in your
large project?

>Episodes
on Make
by Soft-
ware
Carpentry

>Short introduction on
what is a Makefile and
basic operations. >For
more information on
Makefiles see GNU Make
Manual

4.3. C: Linux and shell 21

https://youtu.be/56p6xX0aToI
https://youtu.be/56p6xX0aToI
https://youtu.be/56p6xX0aToI
https://scicomp.aalto.fi/scicomp/shell/
http://swcarpentry.github.io/shell-novice/
https://scicomp.aalto.fi/training/linux-shell-tutorial.html
https://www.youtube.com/playlist?list=PLkEZWD8wbltm8T3mS7SMCpT6WlnyIP50T
https://www.youtube.com/playlist?list=PLkEZWD8wbltm8T3mS7SMCpT6WlnyIP50T
http://swcarpentry.github.io/shell-novice/
http://swcarpentry.github.io/shell-novice/
http://swcarpentry.github.io/shell-novice/
http://swcarpentry.github.io/shell-novice/
https://coderefinery.github.io/IDEs/
https://www.youtube.com/playlist?list=PLUQy4zfrctjH-FsjpIZDZ0NBznvF4FdNP
https://www.youtube.com/playlist?list=PLUQy4zfrctjH-FsjpIZDZ0NBznvF4FdNP
https://aaltoscicomp.github.io/linux-shell/the-shell/
https://aaltoscicomp.github.io/linux-shell/the-shell/
https://www.youtube.com/watch?v=zbKdDsNNOhg
https://www.youtube.com/watch?v=zbKdDsNNOhg
https://www.youtube.com/watch?v=PWqS4NBhEY8
https://www.youtube.com/watch?v=PWqS4NBhEY8
https://coderefinery.github.io/git-intro/
https://coderefinery.github.io/git-intro/
https://www.youtube.com/watch?v=UHWR3Nj3bhE&list=PLA86D04D6E0BFD2E0&index=9
https://www.youtube.com/watch?v=UHWR3Nj3bhE&list=PLA86D04D6E0BFD2E0&index=9
https://www.youtube.com/watch?v=UHWR3Nj3bhE&list=PLA86D04D6E0BFD2E0&index=9
https://www.youtube.com/watch?v=UHWR3Nj3bhE&list=PLA86D04D6E0BFD2E0&index=9
https://www.mn.uio.no/geo/english/services/it/help/using-linux/ssh-tips-and-tricks.html
https://scicomp.aalto.fi/scicomp/ssh.html
https://scicomp.aalto.fi/scicomp/ssh.html
https://www.youtube.com/playlist?list=PLF47AC7312BE0799A
https://opensource.com/article/18/8/what-how-makefile
https://www.gnu.org/software/make/manual/make.html
https://www.gnu.org/software/make/manual/make.html

Hands-on Scientific Computing

About Questions Video In-
tro

Reading Aalto

C10
Basic
shell

Let’s face it: the command
line is the basis of most data
science and programming.

>How does the
shell work?
>When to use
a CLI instead
of a GUI?

>Shell
crash
course

>Shell crash course
>Software carpentry
Shell-novice >The first
part of our shell course is
good too.

C23
Text
edi-
tors
and
IDEs

Your best friend is a good text
editor - sometimes you just
need to edit things quickly on
some remote system.

>Which tools
to use for code
development
and editing?

>Get to
know
VS Code
tutorial
series

>Software Carpentry
shell-novice, “Create a
text file” part of section
3 >Tutorial on IDEs by
CodeRefinery.

C20
Shell
script-
ing

If you can do it on the Linux
shell, you can automate it.

>How to
make use of
shell script-
ing tools in
repetitive task
automation?

>Shell
scripting
tutorials.

>Continue with the
Science-IT Linux shell
tutorial part 2.

C21
Ver-
sion
con-
trol
for
you

Version control lets you track
changes, go back in time, and
collaborate on code and pa-
pers: an absolute requirement
for scientific computing.

>What is Git?
>How to ini-
tialize a Git
repository?

>Why use
version
control
>Git for
beginners

>Introduction to version
control by CodeRefinery

C22
SSH
and
re-
mote
ac-
cess

A short but important course:
how to do work remotely. Dif-
ferent expert tips for making
ssh better, too.

>What does
SSH mean and
when to use it?

>Intro-
duction
to secure
shell by
Software
Carpentry

>SSH for working on a re-
mote machine.

How to
make
ssh work
better
by Aalto
Scicomp

C23
Make

Automate the repetitive stuff
with Make.

>How can a
Makefile be
useful in your
large project?

>Episodes
on Make
by Soft-
ware
Carpentry

>Short introduction on
what is a Makefile and
basic operations. >For
more information on
Makefiles see GNU Make
Manual

4.4 D: Clusters and High Performance Computing

Using advanced computational resources. This will be highly site-specific. We include some basic information here,
but you will always have to refer to specific site’s instructions.

22 Chapter 4. Outline

https://youtu.be/56p6xX0aToI
https://youtu.be/56p6xX0aToI
https://youtu.be/56p6xX0aToI
https://scicomp.aalto.fi/scicomp/shell/
http://swcarpentry.github.io/shell-novice/
https://scicomp.aalto.fi/training/linux-shell-tutorial.html
https://www.youtube.com/playlist?list=PLkEZWD8wbltm8T3mS7SMCpT6WlnyIP50T
https://www.youtube.com/playlist?list=PLkEZWD8wbltm8T3mS7SMCpT6WlnyIP50T
http://swcarpentry.github.io/shell-novice/
http://swcarpentry.github.io/shell-novice/
http://swcarpentry.github.io/shell-novice/
http://swcarpentry.github.io/shell-novice/
https://coderefinery.github.io/IDEs/
https://www.youtube.com/playlist?list=PLUQy4zfrctjH-FsjpIZDZ0NBznvF4FdNP
https://www.youtube.com/playlist?list=PLUQy4zfrctjH-FsjpIZDZ0NBznvF4FdNP
https://aaltoscicomp.github.io/linux-shell/the-shell/
https://aaltoscicomp.github.io/linux-shell/the-shell/
https://www.youtube.com/watch?v=zbKdDsNNOhg
https://www.youtube.com/watch?v=zbKdDsNNOhg
https://www.youtube.com/watch?v=PWqS4NBhEY8
https://www.youtube.com/watch?v=PWqS4NBhEY8
https://coderefinery.github.io/git-intro/
https://coderefinery.github.io/git-intro/
https://www.youtube.com/watch?v=UHWR3Nj3bhE&list=PLA86D04D6E0BFD2E0&index=9
https://www.youtube.com/watch?v=UHWR3Nj3bhE&list=PLA86D04D6E0BFD2E0&index=9
https://www.youtube.com/watch?v=UHWR3Nj3bhE&list=PLA86D04D6E0BFD2E0&index=9
https://www.youtube.com/watch?v=UHWR3Nj3bhE&list=PLA86D04D6E0BFD2E0&index=9
https://www.mn.uio.no/geo/english/services/it/help/using-linux/ssh-tips-and-tricks.html
https://scicomp.aalto.fi/scicomp/ssh.html
https://scicomp.aalto.fi/scicomp/ssh.html
https://www.youtube.com/playlist?list=PLF47AC7312BE0799A
https://opensource.com/article/18/8/what-how-makefile
https://www.gnu.org/software/make/manual/make.html
https://www.gnu.org/software/make/manual/make.html

Hands-on Scientific Computing

4.4.1 D: Clusters and High Performance Computing

About Questions Video
Intro

Reading Aalto

D01
What is
HPC?

Before you can use larger re-
sources, you need to under-
stand the difference from your
own computers

>What are the scales
of computing?

>HPC Intro Triton cluster
intro

D20
Mod-
ules
and
soft-
ware

Using and installing software
on a cluster is different from
your own computer, because
hundreds of people are shar-
ing it. Modules are the solu-
tion.

>How do you use
module? >How do
you find software?

>Lmod
intro-
duc-
tion

>Triton tutorials
for intro: mod-
ules, applications,
>Lmod user guide

> Software
and appli-
cations, >
modules

D21
Batch
sys-
tems

On a cluster, you have to
share resources with others.
Slurm is one batch queuing
system that makes it possible.

>What role does
the batch system
fill? >How does one
submit to the batch
system?

>Slurm
basics
>inter-
active
jobs
>batch
jobs

Triton tutori-
als: >interactive,
>serial, >array

Triton tu-
torials:
interactive,
serial, array

D22
HPC
Storage

Storage turns out to be just
as important as computing
power. There are different
places available, each with
different advantages.

>Why is storage so
important? >How
can you monitor in-
put/output (I/O) per-
formance? >How
to best handle your
data?

>HPC
I/O
princi-
ples

>Storage basics. Triton tutori-
als: storage
basics. More
advanced:
lustre, local
storage,
small files

D23
Parallel
com-
puting

The point of a cluster is to
run things in parallel. Shared
memory (OpenMP) and mes-
sage passing (MPI) are the
most common models. Learn
how to run them, not write
them.

>What are the main
models of parallel
code? >How are
they run on clusters?
>How do you figure
out what your code
uses?

>Parallel jobs. Triton tutori-
als: parallel.

D24
Ad-
vanced
shell
script-
ing
and au-
toma-
tion

Hands-on shell scripting,
putting everything together to
automate large computations
on the cluster.

Various courses,
finishing the linux
shell tutorial is a
good start. The
Advanced bash
scripting guide is a
classic.

4.4. D: Clusters and High Performance Computing 23

https://scicomp.aalto.fi/triton/tut/intro.html
https://scicomp.aalto.fi/triton/tut/intro.html
https://scicomp.aalto.fi/triton/tut/intro.html
https://youtu.be/Et5bXBOKHoc
https://youtu.be/Et5bXBOKHoc
https://youtu.be/Et5bXBOKHoc
https://youtu.be/Et5bXBOKHoc
https://scicomp.aalto.fi/triton/tut/modules.html
https://scicomp.aalto.fi/triton/tut/modules.html
https://scicomp.aalto.fi/triton/tut/applications.html
https://lmod.readthedocs.io/en/latest/010_user.html
https://scicomp.aalto.fi/triton/tut/applications.html
https://scicomp.aalto.fi/triton/tut/applications.html
https://scicomp.aalto.fi/triton/tut/applications.html
https://scicomp.aalto.fi/triton/tut/modules.html
https://youtu.be/49DzPT9HFJM
https://youtu.be/49DzPT9HFJM
https://youtu.be/U2Bpg4sZ8Xg
https://youtu.be/U2Bpg4sZ8Xg
https://youtu.be/U2Bpg4sZ8Xg
https://youtu.be/U2Bpg4sZ8Xg
https://youtu.be/U2Bpg4sZ8Xg
https://scicomp.aalto.fi/triton/tut/interactive.html
https://scicomp.aalto.fi/triton/tut/serial.html
https://scicomp.aalto.fi/triton/tut/array.html
https://scicomp.aalto.fi/triton/tut/interactive.html
https://scicomp.aalto.fi/triton/tut/serial.html
https://scicomp.aalto.fi/triton/tut/array.html
https://youtu.be/V_vWh0kWPBs
https://youtu.be/V_vWh0kWPBs
https://youtu.be/V_vWh0kWPBs
https://youtu.be/V_vWh0kWPBs
https://scicomp.aalto.fi/triton/tut/storage.html
https://scicomp.aalto.fi/triton/tut/storage.html
https://scicomp.aalto.fi/triton/tut/storage.html
https://scicomp.aalto.fi/triton/usage/lustre.html
https://scicomp.aalto.fi/triton/usage/localstorage.html
https://scicomp.aalto.fi/triton/usage/localstorage.html
https://scicomp.aalto.fi/triton/usage/smallfiles.html
https://scicomp.aalto.fi/triton/tut/parallel.html
https://scicomp.aalto.fi/triton/tut/parallel.html
https://scicomp.aalto.fi/training/linux-shell-tutorial/
https://scicomp.aalto.fi/training/linux-shell-tutorial/
https://linux.die.net/abs-guide/
https://linux.die.net/abs-guide/

Hands-on Scientific Computing

About Questions Video
Intro

Reading Aalto

D01
What is
HPC?

Before you can use larger re-
sources, you need to under-
stand the difference from your
own computers

>What are the scales
of computing?

>HPC Intro Triton cluster
intro

D20
Mod-
ules
and
soft-
ware

Using and installing software
on a cluster is different from
your own computer, because
hundreds of people are shar-
ing it. Modules are the solu-
tion.

>How do you use
module? >How do
you find software?

>Lmod
intro-
duc-
tion

>Triton tutorials
for intro: mod-
ules, applications,
>Lmod user guide

> Software
and appli-
cations, >
modules

D21
Batch
sys-
tems

On a cluster, you have to
share resources with others.
Slurm is one batch queuing
system that makes it possible.

>What role does
the batch system
fill? >How does one
submit to the batch
system?

>Slurm
basics
>inter-
active
jobs
>batch
jobs

Triton tutori-
als: >interactive,
>serial, >array

Triton tu-
torials:
interactive,
serial, array

D22
HPC
Storage

Storage turns out to be just
as important as computing
power. There are different
places available, each with
different advantages.

>Why is storage so
important? >How
can you monitor in-
put/output (I/O) per-
formance? >How
to best handle your
data?

>HPC
I/O
princi-
ples

>Storage basics. Triton tutori-
als: storage
basics. More
advanced:
lustre, local
storage,
small files

D23
Parallel
com-
puting

The point of a cluster is to
run things in parallel. Shared
memory (OpenMP) and mes-
sage passing (MPI) are the
most common models. Learn
how to run them, not write
them.

>What are the main
models of parallel
code? >How are
they run on clusters?
>How do you figure
out what your code
uses?

>Parallel jobs. Triton tutori-
als: parallel.

D24
Ad-
vanced
shell
script-
ing
and au-
toma-
tion

Hands-on shell scripting,
putting everything together to
automate large computations
on the cluster.

Various courses,
finishing the linux
shell tutorial is a
good start. The
Advanced bash
scripting guide is a
classic.

4.5 E: Scientific coding

This isn’t about doing the programming itself, but managing it in research projects. A prerequisite is knowing some
programming language already.

24 Chapter 4. Outline

https://scicomp.aalto.fi/triton/tut/intro.html
https://scicomp.aalto.fi/triton/tut/intro.html
https://scicomp.aalto.fi/triton/tut/intro.html
https://youtu.be/Et5bXBOKHoc
https://youtu.be/Et5bXBOKHoc
https://youtu.be/Et5bXBOKHoc
https://youtu.be/Et5bXBOKHoc
https://scicomp.aalto.fi/triton/tut/modules.html
https://scicomp.aalto.fi/triton/tut/modules.html
https://scicomp.aalto.fi/triton/tut/applications.html
https://lmod.readthedocs.io/en/latest/010_user.html
https://scicomp.aalto.fi/triton/tut/applications.html
https://scicomp.aalto.fi/triton/tut/applications.html
https://scicomp.aalto.fi/triton/tut/applications.html
https://scicomp.aalto.fi/triton/tut/modules.html
https://youtu.be/49DzPT9HFJM
https://youtu.be/49DzPT9HFJM
https://youtu.be/U2Bpg4sZ8Xg
https://youtu.be/U2Bpg4sZ8Xg
https://youtu.be/U2Bpg4sZ8Xg
https://youtu.be/U2Bpg4sZ8Xg
https://youtu.be/U2Bpg4sZ8Xg
https://scicomp.aalto.fi/triton/tut/interactive.html
https://scicomp.aalto.fi/triton/tut/serial.html
https://scicomp.aalto.fi/triton/tut/array.html
https://scicomp.aalto.fi/triton/tut/interactive.html
https://scicomp.aalto.fi/triton/tut/serial.html
https://scicomp.aalto.fi/triton/tut/array.html
https://youtu.be/V_vWh0kWPBs
https://youtu.be/V_vWh0kWPBs
https://youtu.be/V_vWh0kWPBs
https://youtu.be/V_vWh0kWPBs
https://scicomp.aalto.fi/triton/tut/storage.html
https://scicomp.aalto.fi/triton/tut/storage.html
https://scicomp.aalto.fi/triton/tut/storage.html
https://scicomp.aalto.fi/triton/usage/lustre.html
https://scicomp.aalto.fi/triton/usage/localstorage.html
https://scicomp.aalto.fi/triton/usage/localstorage.html
https://scicomp.aalto.fi/triton/usage/smallfiles.html
https://scicomp.aalto.fi/triton/tut/parallel.html
https://scicomp.aalto.fi/triton/tut/parallel.html
https://scicomp.aalto.fi/training/linux-shell-tutorial/
https://scicomp.aalto.fi/training/linux-shell-tutorial/
https://linux.die.net/abs-guide/
https://linux.die.net/abs-guide/

Hands-on Scientific Computing

4.5.1 E: Scientific coding

About Questions Video Intro Reading Aalto
E60
Mod-
ular
code
devel-
op-
ment

Break your large programs into
small problems by separating
aspects of desired functionality
to different sub-modules.

>How to di-
vide code into
independent
modules? >What
are pure func-
tions like?

>Python exam-
ple of breaking
code into small
components

>Lesson on Modular
code development by
CodeRefinery

E61
Soft-
ware
testing

It is important to ensure that
your program performs effec-
tively and without failures.
Adding tests for your software
can save a lot of your time later.

>How to test
code on different
levels? >What
kind of testing
tools are there?

>Software test-
ing fundamen-
tals by Software
Carpentry

>Lesson on testing by
CodeRefinery

E62
Profil-
ing

Code efficiency is critical espe-
cially in HPC. Learn to measure
the performance of your pro-
grams.

>What is profil-
ing used for?

>Profiling
Python code
with cProfile

>Profiling tools for
Linux >Profiling for
C and Python >An in-
tro article on Ruby
and Python’s profilers

Tri-
ton
pro-
fil-
ing
guide

E63
De-
bug-
ging

Detect, investigate and resolve
bugs.

>How to debug
different types of
errors?

>Debugging
strategies

>Debugging in a nut-
shell. >See Triton’s
debugging guide >A
hands-on tutorial on
pdb debugger

E02
Soft-
ware
Li-
cens-
ing

Sharing your work can be very
beneficial. Take a look at social
coding and software licensing.

>What is free
software? >Why
should you share
your code?

>Brief intro-
duction to
differences be-
tween open and
closed source
software

>Lesson on social
coding by CodeRe-
finery >Brief guide to
licensing

E04
Docu-
men-
tation

Document your project so other
people can easily use the code
and even contribute to it.

>What should
be included in a
documentation?

>Documen-
tation with
Sphinx

>Tools for documen-
tation >CodeRefinery
lesson on documenta-
tion

E03
Re-
pro-
ducible
re-
search

How different tools can im-
prove reproducibility.

>Which tools
can help with
reproducibility?

>What is repro-
ducible research

>Lesson by CodeRe-
finery

4.5. E: Scientific coding 25

https://www.youtube.com/watch?v=mz_T554Qe6A
https://www.youtube.com/watch?v=mz_T554Qe6A
https://cicero.xyz/v3/remark/0.14.0/github.com/coderefinery/modular-code-development/master/talk.md/#1
https://www.youtube.com/playlist?list=PLB384772FCCE1414E
https://www.youtube.com/playlist?list=PLB384772FCCE1414E
https://coderefinery.github.io/testing/
https://www.youtube.com/watch?v=8qEnExGLZfY
https://www.youtube.com/watch?v=8qEnExGLZfY
http://www.brendangregg.com/linuxperf.html
http://rkd.zgib.net/scicomp/profiling/profiling.html
https://jvns.ca/blog/2017/12/17/how-do-ruby---python-profilers-work-/
https://jvns.ca/blog/2017/12/17/how-do-ruby---python-profilers-work-/
https://scicomp.aalto.fi/triton/usage/profiling.html
https://www.youtube.com/watch?v=jlBgMf_atSo
http://rkd.zgib.net/scicomp/debugging/debugging.html
https://scicomp.aalto.fi/triton/usage/debugging.html
https://scicomp.aalto.fi/triton/usage/debugging.html
https://github.com/spiside/pdb-tutorial
https://www.youtube.com/watch?v=f2NkKTn-mw8
https://www.youtube.com/watch?v=f2NkKTn-mw8
https://coderefinery.github.io/social-coding/
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002598
https://www.youtube.com/watch?v=b4iFyrLQQh4
https://guides.lib.berkeley.edu/how-to-write-good-documentation
https://coderefinery.github.io/documentation/
https://coderefinery.github.io/documentation/
https://www.youtube.com/watch?v=4rBX6r5emgQ
https://www.youtube.com/watch?v=4rBX6r5emgQ
https://coderefinery.github.io/reproducible-research/

Hands-on Scientific Computing

About Questions Video Intro Reading Aalto
E60
Mod-
ular
code
devel-
op-
ment

Break your large programs into
small problems by separating
aspects of desired functionality
to different sub-modules.

>How to di-
vide code into
independent
modules? >What
are pure func-
tions like?

>Python exam-
ple of breaking
code into small
components

>Lesson on Modular
code development by
CodeRefinery

E61
Soft-
ware
testing

It is important to ensure that
your program performs effec-
tively and without failures.
Adding tests for your software
can save a lot of your time later.

>How to test
code on different
levels? >What
kind of testing
tools are there?

>Software test-
ing fundamen-
tals by Software
Carpentry

>Lesson on testing by
CodeRefinery

E62
Profil-
ing

Code efficiency is critical espe-
cially in HPC. Learn to measure
the performance of your pro-
grams.

>What is profil-
ing used for?

>Profiling
Python code
with cProfile

>Profiling tools for
Linux >Profiling for
C and Python >An in-
tro article on Ruby
and Python’s profilers

Tri-
ton
pro-
fil-
ing
guide

E63
De-
bug-
ging

Detect, investigate and resolve
bugs.

>How to debug
different types of
errors?

>Debugging
strategies

>Debugging in a nut-
shell. >See Triton’s
debugging guide >A
hands-on tutorial on
pdb debugger

E02
Soft-
ware
Li-
cens-
ing

Sharing your work can be very
beneficial. Take a look at social
coding and software licensing.

>What is free
software? >Why
should you share
your code?

>Brief intro-
duction to
differences be-
tween open and
closed source
software

>Lesson on social
coding by CodeRe-
finery >Brief guide to
licensing

E04
Docu-
men-
tation

Document your project so other
people can easily use the code
and even contribute to it.

>What should
be included in a
documentation?

>Documen-
tation with
Sphinx

>Tools for documen-
tation >CodeRefinery
lesson on documenta-
tion

E03
Re-
pro-
ducible
re-
search

How different tools can im-
prove reproducibility.

>Which tools
can help with
reproducibility?

>What is repro-
ducible research

>Lesson by CodeRe-
finery

4.6 F: Advanced high performance computing

Assorted advanced topics which we can’t go into details of, but might be interesting to you.

26 Chapter 4. Outline

https://www.youtube.com/watch?v=mz_T554Qe6A
https://www.youtube.com/watch?v=mz_T554Qe6A
https://cicero.xyz/v3/remark/0.14.0/github.com/coderefinery/modular-code-development/master/talk.md/#1
https://www.youtube.com/playlist?list=PLB384772FCCE1414E
https://www.youtube.com/playlist?list=PLB384772FCCE1414E
https://coderefinery.github.io/testing/
https://www.youtube.com/watch?v=8qEnExGLZfY
https://www.youtube.com/watch?v=8qEnExGLZfY
http://www.brendangregg.com/linuxperf.html
http://rkd.zgib.net/scicomp/profiling/profiling.html
https://jvns.ca/blog/2017/12/17/how-do-ruby---python-profilers-work-/
https://jvns.ca/blog/2017/12/17/how-do-ruby---python-profilers-work-/
https://scicomp.aalto.fi/triton/usage/profiling.html
https://www.youtube.com/watch?v=jlBgMf_atSo
http://rkd.zgib.net/scicomp/debugging/debugging.html
https://scicomp.aalto.fi/triton/usage/debugging.html
https://scicomp.aalto.fi/triton/usage/debugging.html
https://github.com/spiside/pdb-tutorial
https://www.youtube.com/watch?v=f2NkKTn-mw8
https://www.youtube.com/watch?v=f2NkKTn-mw8
https://coderefinery.github.io/social-coding/
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002598
https://www.youtube.com/watch?v=b4iFyrLQQh4
https://guides.lib.berkeley.edu/how-to-write-good-documentation
https://coderefinery.github.io/documentation/
https://coderefinery.github.io/documentation/
https://www.youtube.com/watch?v=4rBX6r5emgQ
https://www.youtube.com/watch?v=4rBX6r5emgQ
https://coderefinery.github.io/reproducible-research/

Hands-on Scientific Computing

4.6.1 F: Advanced high performance computing

About Ques-
tions

Video
In-
tro

Read-
ing

Aalto

Fxx Parallel
programming
computers

This is an academic course taught in the CS department. It mainly
covers OpenMP and CUDA. Usually taught in 5th period (Apr-
May), search MyCourses/Oodi for CS-E4580.

Fxx GPU
Programming

This was an advanced guest course, useful if you want to know
how to program GPU applications.

>Ma-
teri-
als
here

Fxx MPI Pro-
gramming

This was an advanced guest course, useful if you want to know
internals of MPI or program MPI applications.

>Ma-
teri-
als
here

Fxx HTCon-
dor

Condor allows you to use many workstations as a high throughput
cluster, ideal for mid-range embarrassingly parallel problems.

>Ma-
teri-
als
here

About Ques-
tions

Video
In-
tro

Read-
ing

Aalto

Fxx Parallel
programming
computers

This is an academic course taught in the CS department. It mainly
covers OpenMP and CUDA. Usually taught in 5th period (Apr-
May), search MyCourses/Oodi for CS-E4580.

Fxx GPU
Programming

This was an advanced guest course, useful if you want to know
how to program GPU applications.

>Ma-
teri-
als
here

Fxx MPI Pro-
gramming

This was an advanced guest course, useful if you want to know
internals of MPI or program MPI applications.

>Ma-
teri-
als
here

Fxx HTCon-
dor

Condor allows you to use many workstations as a high throughput
cluster, ideal for mid-range embarrassingly parallel problems.

>Ma-
teri-
als
here

4.6.2 About

Hands-on Scientific Computing is a guide for all researchers and students who have demanding computing needs.

• It can be browsed as needed or as a reference for people working independently.

• It can (in the future) be used as a self-study course to bridge the gap between academic study and independent
research.

• You do not have to enroll in this course unless you wish to be graded.

Hands-on Scientific Computing is a course born out of Aalto University Science-IT, CodeRefinery, and many other
inspirations. Initial funding is provided by an Aalto Online Learning grant.

4.6. F: Advanced high performance computing 27

https://oodi.aalto.fi/a/opintjakstied.jsp?html=1&Kieli=6&Tunniste=CS-E4580
http://science-it.aalto.fi/scip/gpu-computing-fall-2017/
http://science-it.aalto.fi/scip/gpu-computing-fall-2017/
http://science-it.aalto.fi/scip/gpu-computing-fall-2017/
http://science-it.aalto.fi/scip/gpu-computing-fall-2017/
http://science-it.aalto.fi/scip/mpi-intro-spring-2018/
http://science-it.aalto.fi/scip/mpi-intro-spring-2018/
http://science-it.aalto.fi/scip/mpi-intro-spring-2018/
http://science-it.aalto.fi/scip/mpi-intro-spring-2018/
http://science-it.aalto.fi/scip/condor2017/
http://science-it.aalto.fi/scip/condor2017/
http://science-it.aalto.fi/scip/condor2017/
http://science-it.aalto.fi/scip/condor2017/
https://oodi.aalto.fi/a/opintjakstied.jsp?html=1&Kieli=6&Tunniste=CS-E4580
http://science-it.aalto.fi/scip/gpu-computing-fall-2017/
http://science-it.aalto.fi/scip/gpu-computing-fall-2017/
http://science-it.aalto.fi/scip/gpu-computing-fall-2017/
http://science-it.aalto.fi/scip/gpu-computing-fall-2017/
http://science-it.aalto.fi/scip/mpi-intro-spring-2018/
http://science-it.aalto.fi/scip/mpi-intro-spring-2018/
http://science-it.aalto.fi/scip/mpi-intro-spring-2018/
http://science-it.aalto.fi/scip/mpi-intro-spring-2018/
http://science-it.aalto.fi/scip/condor2017/
http://science-it.aalto.fi/scip/condor2017/
http://science-it.aalto.fi/scip/condor2017/
http://science-it.aalto.fi/scip/condor2017/
https://coderefinery.org

Hands-on Scientific Computing

Support

If you have questions about Hands-on SciComp in general, see CodeRefinery zulipchat.

You can also contact us via scip@aalto.fi

Design and development

This is an open project, which means we encourage contributions from everyone and also accept that we have some
compromises to make it generally useful. For local site customizations, we have a templating system using the site/
directory, so that we can have the same source but every site can have their local customizations.

The CONTRIBUTING file explains in easy terms how to contribute specific things.

The DESIGN file explains how we structure the levels, modules, and information within the modules.

The README file lists technical information about contributing.

Partners and users

• Aalto University Science-IT - lead

4.6.3 Study credits (Aalto)

See also:

If you are in Finland but not Aalto, you can get credits via the free FITech program.

You can earn credits from completing this course by doing exercises (if you are in Finland at least). One credit comes
from completing exercises for levels A, B and C. A second credit can be earned by completing exercises for D and E.

Exercises (and this course in general) are designed to make you experience these tools, but are only a starting point to
exploration.

Instructions if you are at Aalto University:

• The course material is on this page, and can be browsed at your own pace.

• Log in to the exercise system kept separately. You need to attempt at least 90% of the exercises and pass at least
50%. You may do this at your own pace.

• Note that exercises are subject to change, even though the course is continuous the exercises may change if you
delay completing the course for too long.

• Request grading and by the instructions in section 1.1. Grading is done about once per month.

4.6.4 Study credits (FITech)

See also:

If you are already a student at Aalto University, you should use the simpler procedure at Study credits (Aalto).

28 Chapter 4. Outline

https://coderefinery.github.io/manuals/chat/
https://github.com/coderefinery/handsonscicomp/blob/master/CONTRIBUTING.rst
https://github.com/coderefinery/handsonscicomp/blob/master/DESIGN.rst
https://github.com/coderefinery/handsonscicomp/blob/master/README.rst
https://aalto.fi/en/
http://science-it.aalto.fi
https://plus.cs.aalto.fi/CS-E4004/2020/
https://plus.cs.aalto.fi/CS-E4004/2020/01_introduction/01_instructions/

Hands-on Scientific Computing

How to start

Hands-on scientific computing is a self-study course where you can reflect on your needs and determine what is useful
for you. Modules have been structured from A to F in a way that the difficultness level rises gradually.

If you only wish to browse the materials, you can freely do so. If you wish to acquire credits or a certificate, you
should read on.

Note: If you are at Aalto University, these steps are not needed: you can log in to the exercise system with your
existing Aalto account and request credits from scip@aalto.fi directly.

Exercises

Our exercise page can be found here: A+ Hands-on scientific computing.

Logging in is required to submit the exercises, so you should log in as “External to Aalto”.

Course evaluation is divided into modules A-C and D-E and you can earn 1 credit from each modules (overall 2
credits). Instead of credits users may also request a certificate after approved completion of course.

More information about the grading practicalities and the exercises can be found on the exercise page.

Although the course is an always open course, notice that the content and exercises might change over time and your
performance may not be valid anymore. Please make sure to finish your work in six months time to secure successful
completion of the course.

Applying for credits

Please fill in the FITech application at Studyinfo.fi:

a. Application for degree students from other Finnish Universities (Bachelor’s or Master’s students)

b. Application for FITech adult learners (PhD students and adult learners)

Make sure you are using the same personal information during the course and in the application. You need to have
Finnish personal identity code to apply for the credits and online banking access code for strong authentication to con-
firm your identity. You will receive automatic messages from the application system. The applications are processed
once a month. When your application is accepted you will receive a message from Studyinfo. Please accept the study
place so we can register the credits for the right person. When the study credits are registered to Aalto University
system you will get an email.

After completing the exercises, you should notify fitech-sci@aalto.fi that your performance is ready for evaluation.
If you have successfully met the grading criteria (90% of exercises completed and have at least 50% correct), your
performance will be accepted and credits registered. Grading is done about once per month.

4.6.5 For teachers

If you are here, you are probably a teacher of some course that requires basic practical computational skills (Linux
command line, git, shell scripting, etc), but you don’t want to have to teach that yourself. We have the solution for you
here, which can be used in different ways:

• Send your students here when it is clear they are missing some prerequisites

• Add this course as a soft prerequisite/recommended reading

• You contribute new material here, instead of making your own prerequisite documents.

4.6. F: Advanced high performance computing 29

mailto:scip@aalto.fi
https://plus.cs.aalto.fi/CS-E4004/2020/
https://opintopolku.fi/hakemus/haku/1.2.246.562.29.00000000000000028018?lang=en
https://opintopolku.fi/hakemus/haku/1.2.246.562.29.00000000000000028017?lang=en

Hands-on Scientific Computing

Our philosophy is “all the basics someone needs to know is online somewhere”, so we help people find that rather than
try to make our own material. This also helps people become more self-sufficient in the future.

Sample text

This could be added to your course prerequisites/syllabus, for example:

To succeed in this course, it is best to have some practical skills in {Linux and command line work,
lightweight software development tools, . . . }. You can review this at https://hands-on.coderefinery.org/.
For this course, the {C and D levels are important for success. You should especially focus on C10 Basic
shell, C23 Text editors and IDEs, C20 Shell Scripting, and all D-level modules}. Quickly browsing and
going back when you need more details is fine.

If you emphasize credits (and are in Finland):

You can earn credits from this as well. One credit comes from the basics (A), related scientific tools (B),
and Linux basics part (C). One credit comes come from high-performance computing (D) and intermediate
programming strategies (E). If you are a student at Aalto University, the course code is CS-E400401, can
be directly added to study plans, and you can begin working at any time. If you are in Finland but not at
Aalto, you may enroll and gain credits through the FITech program.

What content should be added here?

This site isn’t about basic programming courses or the kinds of things you would teach in your courses. It also isn’t
about writing our own new material - almost everything can be found online, somewhere. We want to make that easy
to find. It also doesn’t replace a dedicated course on these topics: this is more informal and just a starting point.

It is likely that you will know of or find some better videos/reading material than what we have currently linked.
Please send that to us! We have two categories, short video intro intros (hopefully with examples) and then longer
reading, about an hour or so.

There may also be modules (topic + description + video + reading) which could be added. We will try to have
some editorial judgment to keep the “main list” short, but we have an “extras” area for each level.

To submit a proposal, please use the GitHub repository if possible. You can read more about directly modifying the
source with pull requests on the contributing page.

4.6.6 CodeRefinery

CodeRefinery is a course on tools needed to do efficient research software development. In-person and online courses
are occasionally offered, however, all material + videos are available online. This page collects this material so that
you can study on your own.

This page contains an index to all material in one place, in the order it is actually presented, and updated with the
current “best” material as we produce new versions of videos / material.

How to use this material

You may go through this at your own page: written and video material are roughly the same and compliment each
other; use one or the other or both in whatever order suits your styles.

• Written lesson material could be used without the videos.

• Videos are self-sufficient for an overview but to do examples you also want to open the written material. They
are portrait-mode so that you can adjust your screen to have half of it for you.

30 Chapter 4. Outline

https://hands-on.coderefinery.org/
https://github.com/coderefinery/handsonscicomp
https://github.com/coderefinery/handsonscicomp/blob/master/CONTRIBUTING.rst
https://coderefinery.org

Hands-on Scientific Computing

• Q&A are the live Q&A/notes asked by workshop attendees and answered during the workshop, and are optional
(could be used for advanced study).

In the Hands-on Scientific Computing scheme, most of this material is the E-level, with the git-intro being C-level.
This page is outside of the main Hands-on SciComp flow and there are no credits directly offered for this page.

Git introduction

The git version control system, from the very basics. How to use it well for your own projects. Topics include: why
version control, git, terminology, branches, merging, conflict resolution, inspecting history, undoing things, staging
area, practical advice.

• Overall workshop intro

• Lesson

• Video day 1

• Video day 2

• Day 1 Q&A

• Day 2 Q&A

Git collaborative

How to use Git with multiple people. Topics include: collaboration workflows (centralized and distributed), remotes,
pushing/pulling, pull requests (merge requests), Github, more on branching and merging, conventions when contribut-
ing to other projects.

• Lesson

• Video

• Q&A

Reproducible research and FAIR data

It is easy to do things once, but it’s important to be able to do them many times, or for others to be able to do
them. Topics include: motivation, organization of files in projects, environments (virtualenv, conda) and recording
dependencies, automating computational steps, sharing code and data.

• Lesson

• Video

• Q&A

Social coding and open software

Eventually, you need to use the code or results that someone else has made - or need for others to be able to use your
creations! Topics include: why we share, benefits to you, barriers to sharing, encouraging reuse, licenses, citation of
software.

• Lesson

• Video

• Q&A

4.6. F: Advanced high performance computing 31

https://www.youtube.com/watch?v=q_DFH1SgTvc&list=PLpLblYHCzJACm0Nz8ZxmdC6F8UuSYwWGQ&index=1
https://coderefinery.github.io/git-intro/
https://www.youtube.com/watch?v=QcwQ8jeaHmc&list=PLpLblYHCzJACm0Nz8ZxmdC6F8UuSYwWGQ&index=2
https://www.youtube.com/watch?v=MeHB_Fjssjw&list=PLpLblYHCzJACm0Nz8ZxmdC6F8UuSYwWGQ&index=4
https://coderefinery.github.io/2021-05-10-workshop/questions/day1/
https://coderefinery.github.io/2021-05-10-workshop/questions/day2/
https://coderefinery.github.io/git-collaborative/
https://www.youtube.com/watch?v=BS7tlcEKrYA&list=PLpLblYHCzJACm0Nz8ZxmdC6F8UuSYwWGQ&index=6
https://coderefinery.github.io/2021-05-10-workshop/questions/day3/
https://coderefinery.github.io/reproducible-research/
https://www.youtube.com/watch?v=MxZF1gEJoWw&list=PLpLblYHCzJACm0Nz8ZxmdC6F8UuSYwWGQ&index=8
https://coderefinery.github.io/2021-05-10-workshop/questions/day4/#reproducible-research-motivation
https://coderefinery.github.io/social-coding/
https://www.youtube.com/watch?v=XkT8wMRcJok&list=PLpLblYHCzJACm0Nz8ZxmdC6F8UuSYwWGQ&index=9
https://coderefinery.github.io/2021-05-10-workshop/questions/day4/#social-coding

Hands-on Scientific Computing

Jupyter

Jupyter is a system for interactive computing. Topics include: why notebooks, best practices, tips and tricks, the
Jupyter ecosystem, basics of Jupyter, notebooks and version control, sharing notebooks.

• Lesson

• Video

• Q&A

Documentation

Documentation is often the difference between reusable (or usable by yourself in six months) and not. We go over
various ways to make documentation much more enjoyable. Topics include: types of documentation, popular tools,
in-code documentation, readme files, the Sphinx documentation generator, hosting docs on ReadTheDocs or Github
Pages.

• Lesson

• Video

• Q&A

Software testing

Automatic testing is one of the cornerstones of modern software development and without it, you often end up sending
more and more time fixing old bugs rather than doing new things. Here, we the concepts and simple strategies for
getting started. Topics include: motivation, relevance to scientific accuracy, pytest, local testing, automated testing
(Github Actions), test design.

• Lesson

• Video

• Q&A

Modular code development

When you can mix-and-match and reuse code, your productivity goes way up, and that is enabled by modularity. Here,
we give a basic intro to the concept and how to do so. Topics include: what is modularity, why, functions, modules,
state and pure functions, unit test, command line interface.

• Lesson

• Video

• Q&A

Concluding remarks and where to go from here

• Lesson

• Video

• Q&A

32 Chapter 4. Outline

https://coderefinery.github.io/jupyter/
https://www.youtube.com/watch?v=Vv2eGDiE3IU&list=PLpLblYHCzJACm0Nz8ZxmdC6F8UuSYwWGQ&index=11
https://coderefinery.github.io/2021-05-10-workshop/questions/day5/#jupyter-notebooks
https://coderefinery.github.io/documentation/
https://www.youtube.com/watch?v=0IZeQlXmtd4&list=PLpLblYHCzJACm0Nz8ZxmdC6F8UuSYwWGQ&index=12
https://coderefinery.github.io/2021-05-10-workshop/questions/day5/#documentation
https://coderefinery.github.io/testing/
https://www.youtube.com/watch?v=s72AqTTi_Y8&list=PLpLblYHCzJACm0Nz8ZxmdC6F8UuSYwWGQ&index=14
https://coderefinery.github.io/2021-05-10-workshop/questions/day6/#software-testing
https://coderefinery.github.io/modular-type-along/
https://www.youtube.com/watch?v=BlomsX5Xm-Q&list=PLpLblYHCzJACm0Nz8ZxmdC6F8UuSYwWGQ&index=15
https://coderefinery.github.io/2021-05-10-workshop/questions/day6/#modular-code-development
https://github.com/coderefinery/workshop-outro/blob/master/README.md
https://www.youtube.com/watch?v=aJoq7dLnWf4&list=PLpLblYHCzJACm0Nz8ZxmdC6F8UuSYwWGQ&index=16
https://coderefinery.github.io/2021-05-10-workshop/questions/day6/#concluding-remarks

Hands-on Scientific Computing

Other

• Expanded video Q&A from the May 2021 workshop

Source material

Source material from past workshops (in general newer is probably better):

• All CodeRefinery lessons (includes a few minor ones not in the main workshop flow).

• May 2021

– Workshop page

– YouTube playlist

– Q&A

• May 2020

– Workshop page

– YouTube playlist

See also

Subscribe to the CodeRefinery newsletter to be updated of when workshops are opened.

4.6.7 HPC Kickstart

This page contains a virtual high performance computing (HPC, or more precisely, cluster computing) kickstart course.
It is not part of the main Hands-on Scientific Computing flow, but is an expanded version of the “D” level material.

This page currently contains an online course from Aalto University (Aalto Scientific Computing), so the exact ex-
amples may not work on other clusters, but the theory and concepts will - you need to combine this outline with
documentation from your own site.

In the future, this page will be adjusted to the best topics in the best order from all courses combined, which means
various material may be mixed-and-matched so that the transitions are not perfect, but it will still have the best effect
overall.

Introductory material

These can be used in whatever order suits you, or you can watch the intro and then go on.

• Day 1 introduction (Video, Lecture)

• HPC theory crash course: some background about high-performance and cluster computing, not strictly neces-
sary to move on to the other material (and could even be watched at the end) (Video, Slides)

• How to ask for help with supercomputers (Video, Slides)

• Your future in scientific computing. (Video, Outline)

4.6. F: Advanced high performance computing 33

https://www.youtube.com/watch?v=p03ebpjuRgA&list=PLpLblYHCzJACm0Nz8ZxmdC6F8UuSYwWGQ&index=17
https://coderefinery.org/lessons/
https://coderefinery.github.io/2021-05-10-workshop/
https://www.youtube.com/playlist?list=PLpLblYHCzJACm0Nz8ZxmdC6F8UuSYwWGQ
https://coderefinery.github.io/2021-05-10-workshop/questions/
https://coderefinery.github.io/2020-05-25-online/
https://www.youtube.com/playlist?list=PLpLblYHCzJAAfke64bWU0mTPQE5kVZs_p
https://coderefinery.org
https://www.youtube.com/watch?v=N3UcSgS-SAw&list=PLZLVmS9rf3nPFw29oKUj6w1QdsTCECS1S&index=2
https://scicomp.aalto.fi/training/scip/summer-kickstart/intro
https://www.youtube.com/watch?v=Az9AVl1zatk&list=PLZLVmS9rf3nPFw29oKUj6w1QdsTCECS1S&index=3
https://users.aalto.fi/degtyai1/SCiP2021_kick.HPC_crash_course.2021-06-04.pdf
https://www.youtube.com/watch?v=ZUVdGmSuE0g&list=PLZLVmS9rf3nPFw29oKUj6w1QdsTCECS1S&index=12
https://cicero.xyz/v3/remark/0.14.0/github.com/bast/help-with-supercomputers/main/talk.md/
https://www.youtube.com/watch?v=AJnuOYJIBVo&list=PLZLVmS9rf3nPFw29oKUj6w1QdsTCECS1S&index=7
https://scicomp.aalto.fi/training/scip/summer-kickstart/future/

Hands-on Scientific Computing

Main tutorials

“How to connect and use software/data” track:

• Connecting to the cluster (Video Reading ‘Q&A <>‘__)

– Accounts, ssh, ssh keys, different operating systems, Jupyter, remote desktop environments

• Data storage * Video, Reading, ‘Q&A <>‘__)

– About storage, different storage locations and properties, quotas, access on other computers, remote access

• Applications on the cluster (Video, Reading, ‘Q&A <>‘__)

– How to use other software, common applications, singularity containers, requesting new software

• Software modules (Video, Reading, ‘Q&A <>‘__)

– The module command, searching for modules, loading modules, module versions, module collections.

“How to actually run stuff” track. This goes into detail about the batch system and accessing resources:

• Interactive jobs (Video, Reading, ‘Q&A <>‘__)

– Scheduling systems, Slurm, requesting resources, running jobs you can see directly.

• Serial jobs (Video, Reading, ‘Q&A <>‘__)

– Jobs that run without your interaction, scripting jobs, checking output, viewing history, cancelling jobs.

• Monitoring jobs (Video, Reading, ‘Q&A <>‘__)

– Checking actual resource usage of jobs (CPU/memory/GPU) while running and after finished, adjusting
resource requirements, reducing resource wastage.

• Parallel jobs (Video, Reading, ‘Q&A <>‘__)

– Types of parallelism, shared memory (OpenMP), message passing (MPI), multiprocessing, how to run
each of them, monitoring performance (doesn’t cover writing new programs that can do this).

• Array jobs (Video, Reading, ‘Q&A <>‘__)

– What is an array job, doing the same thing many times, serial job → array job, various tips and examples.

• GPU jobs (Video, Reading, ‘Q&A <>‘__)

– GPU programs, machine learning frameworks, compiling CUDA code, requesting a GPU, monitoring
efficiency, common efficiency traps.

Special topics

These special topics can be used in whatever order suits you, if they are relevant to your interests.

• Scientific computing workflows: different ways of actually using computing resources. Recommended to put
the cluster into perspective with other types of needs. (Video, Reading, ‘Q&A <>‘__)

• Currently available resources at CSC, Finland: The above material is mostly abut what you can find at one
university on a cluster (though even bigger clusters use the same interface). This talks about other resources
available at a national computing center (other countries will be somewhat similar). (Video, Reading, ‘Q&A
<>‘__)

• Cluster etiquette: We learned what you can do, but what should you do to not annoy others on the cluster? See
more in Research Software Hour (Video)

• “How to tame the cluster”, mostly the same material as this whole course, compressed into one hour, with a
complete example worked out. (Video)

34 Chapter 4. Outline

https://www.youtube.com/watch?v=A3LafWWxaj4&list=PLZLVmS9rf3nPFw29oKUj6w1QdsTCECS1S&index=10
https://scicomp.aalto.fi/triton/tut/connecting/
https://www.youtube.com/watch?v=qcaPA44gXM0&list=PLZLVmS9rf3nPFw29oKUj6w1QdsTCECS1S&index=13
https://scicomp.aalto.fi/triton/tut/storage/
https://www.youtube.com/watch?v=t1aViYuUu-Q&list=PLZLVmS9rf3nPFw29oKUj6w1QdsTCECS1S&index=11
https://scicomp.aalto.fi/triton/tut/applications/
https://www.youtube.com/watch?v=1zCRVP7Lzes&list=PLZLVmS9rf3nPFw29oKUj6w1QdsTCECS1S&index=22
https://scicomp.aalto.fi/triton/tut/modules/
https://www.youtube.com/watch?v=9fh5Gh-fkJI&list=PLZLVmS9rf3nPFw29oKUj6w1QdsTCECS1S&index=14
https://scicomp.aalto.fi/triton/tut/interactive/
https://www.youtube.com/watch?v=ln4hjNSdZJE&list=PLZLVmS9rf3nPFw29oKUj6w1QdsTCECS1S&index=17
https://scicomp.aalto.fi/triton/tut/serial/
https://www.youtube.com/watch?v=Do1BwOL-j8I&list=PLZLVmS9rf3nPFw29oKUj6w1QdsTCECS1S&index=18
https://scicomp.aalto.fi/triton/tut/monitoring/
https://www.youtube.com/watch?v=B_gDDV7VenU&list=PLZLVmS9rf3nPFw29oKUj6w1QdsTCECS1S&index=19
https://scicomp.aalto.fi/triton/tut/parallel/
https://www.youtube.com/watch?v=YLOHj-biU10&list=PLZLVmS9rf3nPFw29oKUj6w1QdsTCECS1S&index=20
https://scicomp.aalto.fi/triton/tut/array/
https://www.youtube.com/watch?v=Ds_WwAJJy3k&list=PLZLVmS9rf3nPFw29oKUj6w1QdsTCECS1S&index=21
https://scicomp.aalto.fi/triton/tut/gpu/
https://www.youtube.com/watch?v=ExFbc5EikU0
https://scicomp.aalto.fi/training/scip/intro-linux-aalto-computing/
https://www.youtube.com/watch?v=BGcKD3oEoyw&list=PLZLVmS9rf3nPFw29oKUj6w1QdsTCECS1S&index=5
https://kannu.csc.fi/s/3K8q93XSwtSgHEa
https://www.youtube.com/watch?v=NIW9mqDwnJE&list=PLpLblYHCzJAB6blBBa0O2BEYadVZV3JYf
https://www.youtube.com/watch?v=5HN9-MW7Tw8&list=PLpLblYHCzJAB6blBBa0O2BEYadVZV3JYf

Hands-on Scientific Computing

See also

• Full playlist of June 2021 Aalto kickstart course and the course page.

4.6.8 Similar resources

Hands-on Scientific Computing is not unique, similar material can be found all around the internet. In fact, this is
what we direct you to. HoSC organizes it into one place for you.

Similar large courses/workshops

• Software Carpentry is basic-level material, focused on programming, basic unix commands, and version control.

• CodeRefinery is an intermediate level extension to people who do programming: more version control and basic
software development practices that researchers need to know.

– A virtual CodeRefinery course is hosted on this site - lessons, videos, notes all linked together.

• Virtual HPC Kickstart course hosted on this site (focused on Aalto University but useful to anyone).

4.6. F: Advanced high performance computing 35

https://www.youtube.com/playlist?list=PLZLVmS9rf3nPFw29oKUj6w1QdsTCECS1S
https://scicomp.aalto.fi/training/scip/summer-kickstart/
https://software-carpentry.org
https://coderefinery.org

	Using the material
	Study credits
	Course video introduction
	Outline
	A: Basics
	B: Related science skills
	C: Linux and shell
	D: Clusters and High Performance Computing
	E: Scientific coding
	F: Advanced high performance computing

